a2 United States Patent

Safreed et al.

US009478033B1

US 9,478,033 B1
Oct. 25, 2016

(10) Patent No.:
45) Date of Patent:

(54) PARTICLE-BASED TRACKING OF OBJECTS
WITHIN IMAGES

(75) Inventors: Sean Safreed, San Francisco, CA (US);
Stu Maschwitz, San Francisco, CA
(US); Stonewall Ballard, Concord, MA
(US)

(73) Assignee: Red Giant Software, Beaverton, OR
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 1538 days.

(21) Appl. No.: 12/848,653

(22) Filed: Aug. 2, 2010
(51) Imt.CL
GO6K 9/00 (2006.01)
GO6T 7/00 (2006.01)
GO6T 7/20 (2006.01)
HO4N 19/54 (2014.01)
(52) US. CL
CPC ... GO6T 7/0042 (2013.01); GO6K 9/00744

(2013.01); GO6T 7/2033 (2013.01); GO6T
2207/10016 (2013.01); HO4N 19/54 (2014.11)
(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,936,671 A 8/1999 Van Beek et al.
5,982,909 A * 11/1999 Erdemetal. 382/103
7,372,472 Bl 5/2008 Bordeleau et al.

OTHER PUBLICATIONS

Toklu et al., “Semi-automatic video object segmentation in the
presence of occlusion”, Jun. 2000, IEEE Transactions on Circuits
and Systems for Video Technology, vol. 10, iss. 4, p. 624-629.*
Toklu et al., “Two-dimensional triangular mesh-based mosaicking
for object tracking in the presence of occlusion”, Jan. 10, 1997,
Proc. SPIE, Visual Communications and Image Processing *97, vol.
3024, p. 328-337.*

Toklu et al., “Tracking Motion and Intensity Variations Using
Hierarchical 2-D Mesh Modeling for Synthetic Object Transfigu-
ration”, Nov. 1996, Graphical Models and Image Processing, vol.
58, No. 6, p. 553-573.*

Jain et al., “Non-Rigid Spectral Correspondence of Triangle
Meshes”, Apr. 5, 2007, International Journal of Shape Modeling, p.
1-24.*

Toklu et al., “2-D mesh-based tracking of deformable objects with
occlusion”, Sep. 19, 1996, Proceedings of International Conference
on Image Processing, 1996, vol. 1, p. 933-936.*

Zhao et al., “An object tracking algorithm based on occlusion mesh
model”, 2002, Proceedings of International Conference on Machine
Learning and Cybernetics, 2002, vol. 1, p. 288-292.*

Altunbasak et al., “Occlusion-adaptive 2-D mesh tracking”, May
10, 1996, Conference Proceedings ICASSP-96, vol. 4, p. 2108-
2111.*

Tekalp et al., “Face and 2-D mesh animation in MPEG-4", Jan.
2000, Signal Processing: Image Communication, vol. 15, iss. 4-5, p.
387-421.*

Shewchuk, “Triangle: Engineering a 2D quality mesh generator and
Delaunay triangulator”, 1996, Applied Computational Geometry
towards Geometric Engineering Lecture Notes in Computer Sci-
ence, 1996, vol. 1148, p. 203-222.*

Jean-Yves Bouguet. “Pyramidal Implementation of the Lucas
Kanade Feature Tracker Description of the Algorithm.” Intel Cor-
poration Microprocessor Research Labs.

* cited by examiner

Primary Examiner — Stephen R Koziol
Assistant Examiner — Timothy Choi
(74) Attorney, Agent, or Firm — Crawford Maunu PLLC

(57) ABSTRACT

Objects are tracked within images. According to an example
embodiment, video data is processed for tracking one or
more objects. A computer circuit executes instructions to
process a series of ordered video frames in a set of video data
as follows. A region of interest is defined in an initial one of
the video frames, and a particle mesh is formed from a set
of feature points for an object in the defined region. The
particle mesh is propagated to an adjacent video frame using
motion vectors of points in the mesh to form a coarse
boundary at the adjacent frame. Occlusion and scene bound-
aries are detected in the adjacent video frame, and the
detected boundaries are used to set a boundary and a number
of feature points within the boundary in the adjacent video
frame to maintain mesh coherence and track the object in the
subsequent video frames.

21 Claims, 3 Drawing Sheets

m

and Boundary
‘Condions.

1%

for e frarme
based upon
extating points

el

Daterrine Mosh |
Cohan_nm

Condition

Cohdfence
Variables

Coherance.
Maintained?

U.S. Patent Oct. 25, 2016 Sheet 1 of 3 US 9,478,033 B1

~100
Define Shape
~110 180
Reset to previous
Determine Mesh frame in sequence
Points j prior to losing
coherence
~120
Compute Mesh W
Ballistics J‘
~130
no
[Propagate Mesh 170
Set mesh points
for next frame
based upon
140 existing points
Determine and
Process Occlusion
and Boundary
Conditions ves
150 160
Deae;w;::n“é:ﬂ
Condition J] Maintained?
Coherence

Variables FIG. 1

US 9,478,033 B1

Sheet 2 of 3

Oct. 25, 2016

U.S. Patent

MO|- Jeaq Noed]

T MO| B2 | Yoell

U.S. Patent Oct. 25, 2016 Sheet 3 of 3 US 9,478,033 B1

310
Q 352
H i Dallistics
_ a2 Ballistics Engine :> et I__—_>
Mesh Paint Data

rd
.
320 o

4’ 4’

Bnllldalw lt’ ," New
Mesh Point o mmmh

Generator e // pal

’ ”
2\ <. @
42 350

menm‘, < Coherence OK | | Coherence
Mash points Evaluator

US 9,478,033 Bl

1
PARTICLE-BASED TRACKING OF OBJECTS
WITHIN IMAGES

FIELD

The present invention relates generally to image and
video data processing, and more specifically to tracking
objects in videos.

BACKGROUND

Image and video data processing and manipulation have
become increasingly challenging as the quality and volume
of data have correspondingly increased, and further as the
demand for accurate, presentable image and video has
similarly increased. To this end, a wide variety of image
sequence processing and analysis tasks have involved
object-based video manipulation. However, many video
objects, such as a person’s face, a vehicle, or other objects
in a scene may be only partially visible in respective frames
in an image sequence. For example, scene boundaries, or
occlusion by another video object and other image charac-
teristics can create visibility issues.

Many approaches to processing image and video data
have involved tracking objects in two-dimensional (2D)
images, using a tracking algorithm-type approach to analyze
video frames in order to estimate motion parameters and to
follow an object’s motion path. Such applications have
involved both model-based features such as wire frame
features, as well as region-based features such as points of
interest on a calculated surface, region or active contours.

Despite these attempts at tracking objects, it has been
difficult to associate target locations in consecutive video
frames, especially when the objects are moving fast relative
to the frame rate, are occluded, or move off the scene. In
addition, many approaches to tracking objects have been
limited in their capabilities, and often limited to tracking
objects between frames (e.g., tracking frame-to-frame
motion of a video object for video-object compression).
These and other matters have posed challenges to processing
image and video data.

SUMMARY

The present invention is directed to methods and systems
for tracking objects within a scene or flow of visual images,
in a manner that addresses challenges such as those dis-
cussed in the Background above. These and other aspects of
the present invention are exemplified in a number of
example embodiments, some of which are shown in the
figures and characterized in the claims section that follows.

According to an example embodiment, a system for
processing video data includes a computer circuit configured
to process a series of sequentially-ordered video frames in a
set of video data. The computer circuit defines a region of
interest in an initial one of the video frames, and generates
a particle mesh from a set of feature points for an object in
the defined region. The computer circuit propagates the
particle mesh to an adjacent video frame using motion
vectors of points in the mesh to determine a coarse boundary
at the adjacent frame, and detects a condition of occlusion
and scene boundaries in the adjacent video frame based
upon the position of the determined coarse boundary. The
computer circuit further uses the detected condition of
occlusion and scene boundaries to set a boundary and a
number of feature points within the coarse boundary in the

10

15

20

25

30

35

40

45

50

55

60

2

adjacent video frame, to maintain mesh coherence and track
the object in the adjacent video frame.

Another example embodiment is directed to a system for
tracking objects in a series of video frames. The system
includes a user interface circuit and a computer circuit. The
user interface circuit is configured to receive user inputs for
defining a region of interest in an image represented by a
first one of the video frames. The computer circuit is
configured to generate a particle mesh from a set of feature
points for the defined region of interest in the first one of the
video frames, calculate a transformation function for propa-
gating the mesh to a temporally-adjacent one of the video
frames using motion vectors for the feature points, and
propagate the particle mesh from the first video frame to the
temporally-adjacent video frame. For each subsequent pair
of temporally-adjacent video frames, the computer circuit is
configured to use a transformation function calculated for a
temporally-previous pair of video frames to propagate a
particle mesh from a first one of the pair of video frames to
a second one of the pair of video frames, and calculate a
transformation function for propagating the mesh from the
first one of the pair of video frames to the second one of the
pair of video frames. The computer circuit further tests the
propagated mesh for coherence based upon the number of
the feature points maintained in the propagated mesh
throughout each video frame, and, in response to determin-
ing that the propagated mesh is coherent, uses the propa-
gated mesh to apply a video effect to video data in a region
defined by the mesh in each of the video frames.

Another example embodiment is directed to a system for
tracking objects in a series of video frames. The system
includes a user interface circuit to receive user inputs and a
computer circuit for tracking the objects. The user interface
circuit is configured to receive the user inputs for defining a
region of interest in first and last keyframe images in the
series of video frames. The computer circuit is configured,
for each of the first and last keyframe images, to form a
particle mesh from a set of feature points for the defined
region of interest, calculate a transformation function for
propagating the mesh to a temporally-adjacent one of the
video frames using motion vectors for the feature points, and
propagate the particle mesh from the keyframe images to the
temporally-adjacent video frame. For subsequent pairs of
temporally-adjacent video frames in a temporal direction
towards the other of the first and last keyframe images, the
computer circuit uses a transformation function calculated
for a temporally-previous pair of video frames to propagate
a particle mesh from a first one of the pair of video frames
to a second one of the pair of video frames, and calculates
a transformation function for propagating the mesh from the
first one of the pair of video frames to the second one of the
pair of video frames. The computer circuit further combines
the propagated particle mesh for the video frames generated
from each of the keyframe images, and tests the combined
propagated mesh for coherence based upon the number of
the feature points maintained in the propagated mesh
throughout each video frame. In response to determining
that the combined propagated mesh is coherent, the com-
puter circuit uses the propagated mesh to apply a video effect
to video data in a region defined by the mesh in each of the
video frames, by modifying the video data to which the
video effect is to be applied.

Another example embodiment is directed to a method for
processing video data. The method includes processing a
series of sequentially-ordered video frames (in a set of video
data) in a computer circuit as follows. A region of interest is
defined in an initial one of the video frames, and a particle

US 9,478,033 Bl

3

mesh is generated from a set of feature points for an object
in the defined region. The particle mesh is propagated to an
adjacent video frame using motion vectors of points in the
mesh to determine a coarse boundary at the adjacent frame,
and a condition of occlusion and scene boundaries are
detected in the adjacent video frame based upon the position
of the determined coarse boundary. The detected condition
of occlusion and scene boundaries is used to set a boundary
and a number of feature points within the coarse boundary
in the adjacent video frame, to maintain mesh coherence and
track the object in the adjacent video frame.

Another example embodiment is directed to a non-tran-
sitory computer readable medium including program
instructions that, when executed by a computer processor,
cause the processor to process a series of sequentially-
ordered video frames in a set of video data, by performing
the following steps. A region of interest is defined in an
initial one of the video frames, and a particle mesh is
generated from a set of feature points for an object in the
defined region. The generated particle mesh is transformed
by propagating the particle mesh to an adjacent video frame
using motion vectors of points in the mesh to determine a
coarse boundary at the adjacent frame (e.g., such transfor-
mation transforms an image corresponding to the mesh in
one frame, to an image corresponding to the mesh in another
frame). A condition of occlusion and scene boundaries in the
adjacent video frame is detected based upon the position of
the determined coarse boundary. The detected condition of
occlusion and scene boundaries is then used to set a bound-
ary and a number of feature points within the coarse bound-
ary in the adjacent video frame, to maintain mesh coherence
and track the object in the adjacent video frame.

Various example embodiments are directed to a tracking
system having several sub-systems for tracking objects
within a scene or flow of visual images.

Another example embodiment is directed to particle-
based tracking of objects within a flow of visual images for
defining objects in those images.

Another example embodiment is directed to particle-
based tracking of objects within a flow of visual images,
where one or more of the objects change over time.

Another example embodiment is directed to particle-
based tracking of objects within a flow of visual images that
is bi-directional in time.

Another example embodiment is directed to particle-
based tracking of objects within a flow of visual images that
is resilient in its ability adaptively reset itself to maintain
tracking, if object coherence is lost.

Another example embodiment is directed to particle-
based tracking of objects within a flow of visual images that
is resilient in its ability to track an object as it becomes
occluded by another object.

Another example embodiment is directed to particle-
based tracking of objects within a flow of visual images that
is resilient in its ability to track an object within a scene as
it moves off and back into a scene.

The above summary is not intended to describe each
illustrated embodiment or every implementation of the pres-
ent invention. The figures and detailed description that
follow, as well as the claims, more particularly exemplify
these embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention may be more completely understood in
consideration of the detailed description of various embodi-

10

15

20

25

30

35

40

45

50

55

60

65

4

ments of the invention that follows in connection with the
accompanying drawings as follows:

FIG. 1 shows a block diagram for particle-based tracking,
according to an example embodiment of the present inven-
tion;

FIG. 2 shows an approach for particle-based tracking,
according to another example embodiment of the present
invention; and

FIG. 3 shows a system for particle-based tracking, accord-
ing to another example embodiment of the present inven-
tion.

While the invention is amenable to various modifications
and alternative forms, specifics thereof have been shown by
way of example in the drawings and will be described in
detail. It should be understood, however, that the intention is
not to limit the invention to the particular embodiments
described. On the contrary, the intention is to cover all
modifications, equivalents, and alternatives falling within
the spirit and scope of the invention.

DETAILED DESCRIPTION

Aspects of the present invention are believed to be useful
for tracking objects in a scene or flow of visual images. A
particular application of the present invention relates to
tracking objects in video as the objects move or otherwise
change in subsequent images in the video. While the present
invention is not necessarily limited to such applications,
various aspects of the invention may be appreciated through
a discussion of various examples using this context.

The following discussion characterizes object tracking in
accordance with one or more example embodiments, involv-
ing shape definition, mesh point and ballistics determina-
tion, occlusion and scene boundary management, and the
determination of frame-to-frame mesh coherence. These and
other example embodiments are implemented using a vari-
ety of systems, which may include one or more of a
software-programmed computer or computer arrangement,
programmable circuits, logic circuits, and others. Various
embodiments are directed to computer-executable functions
such as software-based modules that, when executed by a
logic circuit (e.g., a computer), cause the computer or logic
circuit to carry out the various functions discussed, and
related transformation(s) of data. Such transformations may
involve, for example, transforming an input image mesh into
an output image frame by tracking mesh points between
frames and including or excluding pixels or other image data
in the output frame.

In connection with various example embodiments, a
combination of edge location, frame-to-frame mesh coher-
ence and point cloud fitting is used to track objects in a series
of video frames. At an initial frame, points that are trackable
are determined based upon one or more of a variety of
factors, such as by the edge locations of the points. In each
subsequent frame, a determination is made as to whether the
points continue to be consistent. Certain points may be
removed, or additional points may be added, based upon
conditions of the video being processed.

An object to be tracked is identified using a shape
definition operation, using a representation of a vector or
orientation of the object (e.g., an arrow or other directional
indicator that represents the direction of the vector or
orientation). Such shapes may, for example, be a set shape
such as an oval, circle, rectangle or oblate ellipse, or may be
a defined shape such as a complex dynamic mask or an

US 9,478,033 Bl

5

arbitrary shape. Individual points that represent features of
interest can be selected, changed or de-selected as part of a
shape definition process.

In various embodiments, object definition data is provided
as an input, either manually or automatically, to set an object
or group of objects in a video frame to be tracked. For
instance, an individual may manually input or otherwise
select an object in a video frame using an interactive device
in connection with a computer display, which in turn iden-
tifies a region or other type of portion of video image that
defines the selected object. In other embodiments, one or
more objects in a video scene are actively identified, such as
by using an object recognition-type of approach (e.g., a
software-programmed computer that executes functions to
identify objects in a scene). These manually-defined or
automatically-defined objects may, for example, relate to
and/or include objects such as an individual’s face, a
vehicle, a building, a projectile or one of a multitude of
disparate objects to be tracked from frame to frame.

Trackable mesh points, such as features or other regions
within a shape, are set or determined using one or more of
a variety of approaches. Generally, such points are set
relative to an image feature that can be identified from frame
to frame, such as the features of a person’s face or the outline
of an object that tend to be visible and remain relatively
constant between frames. For smooth objects, outside edges
or edges relative to background images may be used to
define a region of points for tracking. In many applications,
various heuristics are used to set a number of points to use
for a particular frame, either automatically or via human
involvement. Contrast, size, shape, consistency and other
factors may be used in connection with such a determina-
tion.

In one implementation, a combination of edge location
and frame-to-frame mesh coherence characteristics are used
within a point-cloud fitting system to define trackable mesh
points. For instance, using a scene including a person’s face
as an example, edge locations of the face may be identified
relative to other shapes in the scene, and the face can often
be readily tracked from video frame to video frame where
the overall set of points used to define the face remains
generally coherent. These points effectively represent a
point-cloud, to which a mesh characterizing the person’s
face can be fit.

The determined points are weighted as a function of
distance from the center and toward the edge of the shape.
A sufficient number of mesh points are used to maintain
consistency, and can vary dynamically over time in order to
maintain coherence. In these contexts, a sufficient number of
mesh points may be defined, for example, as a number of
mesh points that permit coherent tracking of an object from
frame to frame, or that permit such tracking through a
predefined number of frames. Accordingly, a number of
mesh points determined to be sufficient may be set for each
specific application, which may vary according to a variety
of conditions such as motion in a particular scene, or to the
resolution or accuracy desired for tracking functions. For
instance, the number of mesh points may be set based upon
the value of motion vectors assigned to each mesh point
and/or to an entire object.

In some implementations, trackable points in each frame
are identified by edge locations of the points. Where a
previous frame is present, as would correspond to any video
frame after a first frame in the video, trackable points
identified in a previous frame are re-used in a current frame.
For example, if trackable points identified in a previous
frame are consistent, those points can be re-used; however,

30

35

40

45

50

55

60

6

if previously-identified points are not consistent, or perhaps
not visible, those points may be discarded.

The number of points in each frame also varies depending
upon the application, with fewer or more points included as
desired or otherwise useful. For example, the number of
mesh points in a frame may be increased relative to the
number of mesh points in a previous frame if useful to
maintain coherence. Similarly, the number of mesh points in
a frame may be reduced relative to the mesh points in a
previous frame where sufficient coherence can be main-
tained with fewer points (e.g., to reduce processing burden).

In connection with various embodiments, data character-
izing mesh points such as those discussed above is aug-
mented with frame-to-frame directionality data that is used
in tracking objects. The directionality data may, for example,
include one or more of frame-to-frame obstacle flow data or
vector directionality of the mesh points. This augmented
data is used to identify frame-to-frame movement of the
mesh points (or corresponding features) within a scene.
Such definition is applicable, for example, to determining or
otherwise defining a transformation function that transforms
a set of mesh points in a particular frame to a set of mesh
points for a subsequent frame, for use in tracking objects.

In some implementations, the data is processed with a
statistical filter that uses one or more of a variety of filtering
approaches to respectively filter statistical components of
the mesh points, such as may be relevant to the estimation
of' motion for a particular point or set of points, in connection
with the particular combination of points and vector track-
ing. For instance, tracked points or collections of points can
be processed for estimating a projected (tracked) position in
a subsequent frame. The statistical filter may, for example,
also be used to determine information such as pan, zoom and
rotate information for the shape characterized by the mesh
points subjected to the filter.

In various embodiments, mesh points are modified to
maintain coherence, based upon characteristics of the scene
in which the mesh points lie. For instance, if an identified
point or feature is occluded by other objects or by itself
(self-occlusion) in a particular frame, the identified point can
be removed from the set of mesh points tracked for the
frame. If a mesh point or a feature defined by a group of
mesh points moves off screen (out of a frame), the off-screen
points are rejected as unnecessary or out of scope for
tracking. As these mesh points or features come back into
view, they are re-established as part of the defined mesh
points to be tracked. Accordingly, these approaches can be
used to mitigate or eliminate a need to reset a shape area as
set using a shape definition approach as discussed above.

In some applications, a shape area used to define and track
objects is modified automatically relative to scene bound-
aries. For example, as a tracked object nears the edge of a
scene, the boundary of the object is automatically modified
to conform with the edge. As the object comes back into
view, the boundary is increased based on a previous setting
as the object moves back on screen.

In connection with certain embodiments, frame-to-frame
mesh coherence is used to determine the mesh points used
in tracking objects. For example and as may be implemented
with related embodiments discussed above, mesh points
from a previous frame can be used in a subsequent frame
according to point characteristics, such as those based upon
frame-to-frame consistency (or lack thereof). New points are
added to a particular mesh in response to frame-to-frame
inconsistency among existing points and/or a need to further
define a mesh. Existing points are discarded based upon
inconsistencies and/or lack of a need to include certain

US 9,478,033 Bl

7

points to define a mesh. In some implementations, weighting
values are used to assign a weight to points, based upon
which maintenance/removal of the points is carried out.

If the tracking fails for a particular frame or set of frames
(e.g., mesh coherence is lost), tracking is re-initiated at an
appropriate point to re-establish a trackable set of mesh
points. In some implementations, a new mesh is defined at
a frame prior to a particular frame at which tracking failed,
and mesh points are tracked by advancing through frames to
the particular frame at which mesh coherence is lost (e.g., by
re-initiating tracking at one or more frames prior to the
particular frame). For example, the above-discussed shape
definition can be re-initiated at a previous frame, several
frames back from a frame in which tracking is lost (mesh
coherence is lost), and the process continues in an adaptive
manner.

In certain applications, a frame at which to re-initiate
tracking is automatically determined. For example, a com-
puter may use a confidence rating defined by trackability or
other characteristic to select a previous frame having a
desirable confidence rating to achieve. In some applications,
a particular shape in the images is used as a basis for setting
the confidence rating, where that shape may or may not
correspond to tracked features.

In some implementations, this approach to establishing
and maintaining mesh coherence is carried out as a math-
ematical optimization problem that employs an iterative
procedure to solve the problem. In one example, apparent
boundaries of a data set relating to the mesh points are
constructed, and arbitrary regions that the fitting must not
penetrate are defined to ensure that the fitting is appropriate
(e.g., relative to the boundaries). For example, if a particular
object being tracked cannot enter a particular region or go
beyond a particular boundary, such regions are defined to
ensure that the tracking functions do not attempt to track the
object into the regions.

Determining loss of coherence at a particular frame may
involve one or more different approaches that suit the
particular application as relative to one or more of the type
of video, desired processing or available components to
carry out the processing. For instance, the loss of a pre-
defined number of mesh points due to scene characteristics,
a determined or perceived degradation in accuracy of point-
based image characteristics, or a statistical-type evaluation
of frame-to-frame point consistency can be used as a basis
upon which to determine frame-to-frame coherence. Other
characteristics, such as relative positioning of points, point
coordinates, and rotational or other movement-based rela-
tive positioning of points as may be determined in connec-
tion with motion vectors can also be used as a measure of
consistency.

In some applications, loss of coherence is automatically
determined based upon a confidence rating assigned to a
tracked portion of an image. Such a confidence rating may,
for example, be applied based upon the points in a tracked
portion, relative to an ability to accurately define the points
relative to the same points in a previous frame and/or a
number of points that are trackable between frames. When
the confidence rating falls below a set limit, a loss of
coherence is detected and accordingly processed.

In some embodiments, a user interface is configured to
facilitate defining the mesh. The interface includes controls
for determining shapes and boundaries, such as by permit-
ting a user to define the shape and boundary directly, to
select a predefined shape and boundary, or to use some sort
of'automated shape and boundary selection that can augment
or be independent from any user-input shape and boundary

10

15

20

25

30

35

40

45

50

55

60

65

8

selections. In certain implementations, the user interface
includes controls to modify an object orientation vector, or
to select/de-select individual points within a mesh as impor-
tant features (such as the eyes or nose of a person in a scene).

The user interface can be implemented upon a variety of
different types of devices operating upon different platforms.
In some embodiments, the user interface includes a com-
puter that executes programming functions to generate and
display user interface selections to a user viewing a com-
puter screen. The computer presents stored video informa-
tion on the display, and receives user inputs, such as from a
pointing device, to set mesh points, define objects, control
motion characteristics of points, set processing parameters
and characterize other tracking conditions as appropriate.
For instance, the computer may receive a user input from a
computer mouse or pen that involves selecting a region of a
currently-displayed image to use in setting mesh points or
related conditions, such as mesh boundaries for a particular
object to be tracked.

Various embodiments as described herein may be imple-
mented in connection with one or more types of systems. For
example, approaches to detecting or otherwise identifying a
portion of an image to be tracked may involve using
software-based systems, such as the Open Computer Vision
system (OpenCV and/or OpenCV Version 2) available from
Willow Garage of Menlo Park, Calif.

Turning now to the figures, FIG. 1 shows a block diagram
for particle-based tracking, according to an example
embodiment of the present invention. In some implementa-
tions, the tracking approach shown in FIG. 1 is carried out
using a computer-based tracking system programmed with a
tracking algorithm to analyze video frames in order to
estimate motion parameters and follow the motion path of
one or more objects in the video. Model-based features such
as wire frame and region-based features, as may pertain to
points of interest on a calculated surface, region or active
contours, are used in such tracking. While not so limited, the
following discussion is made in the environment of such
example embodiments, as applicable to tracking images in
video frames of a movie clip.

At block 100, a region of interest in a video frame is
defined for frame-to-frame tracking. The region may
include, for example, a predefined keyframe or other type of
shape that may define one or more of a variety of different
types of regions in a video frame, such as a person’s face or
an object. For example, an oval shape can be used to define
a region of a scene corresponding to a person’s face, such as
shown in FIG. 2 and discussed below. Other predefined
shapes can be used to set the boundary, or the boundary can
be set with an arbitrary shape defined using a pointing device
or otherwise. The region of interest can thus be defined
manually, such as via user input directly or indirectly
identifying a region in the video frame. The region of
interest can also be defined automatically, such as by using
computer-driven object identification or recognition.

At block 110, feature points from within the defined
region are identified to form a particle mesh, which gener-
ally follows an outline or boundary of a feature to be tracked.
At block 120, the mesh ballistics are calculated, determining
respective motion vectors applicable to particles in the mesh
(and, correspondingly, to the mesh and tracked object as a
whole).

At block 130, the defined mesh is propagated (e.g.,
transformed) to an adjacent frame using the determined
motion vectors of the identified points in the mesh to form
a coarse boundary in the adjacent frame (e.g., a next/
previous frame, depending upon the video direction). At

US 9,478,033 Bl

9

block 140, occlusion and scene boundaries are detected and
used to modify (if appropriate) one or more mesh points to
maintain mesh coherence, such as by dropping points
occluded by a boundary or via rotation or other character-
istics of the object being tracked, or by adding mesh points
for new points now within the defined region of interest,
such as within an oval or other shape used at block 100.

After selective point modification at block 140, the mesh
is tested at block 150 to determine a mesh coherence
condition (e.g., a number of points that are maintained
and/or trackability of an object). At block 160, if the
determined coherence condition is indicative of or otherwise
satisfies mesh coherence conditions, mesh points for the
next (aforesaid adjacent) frame are set at block 170, based
upon existing points and, where appropriate, adding or
removing points. The process then continues at block 120
with the adjacent frame, again computing mesh ballistics
and continuing on to propagating the mesh to a next sub-
sequent frame.

If the determined coherence condition indicates loss of
mesh coherence at block 160 (e.g., characteristics of the
points fail to satisfy a condition), the tracking is reset at
block 180 to a previous frame in a sequence of frames that
are prior to the frame in which coherence is lost. Depending
upon the direction of the tracking (e.g., forward motion or
reverse motion), the “previous” frame is relative to the
directional position, such that a previous frame when track-
ing through a video in reverse sequence is actually a frame
from a latter portion of the video. The tracking process is
then re-initiated from the reset frame at block 110, by
determining mesh points for the shape defined at block 100.
In this context, the process continues throughout a video
sequence, based upon the ability of the system to maintain
coherence using a determined set of mesh points (and as may
be modified via occlusion/boundary conditions), and re-sets
mesh points when coherence is lost.

FIG. 2 shows an approach 200 for particle-based tracking
in a video scene showing two individuals, according to
another example embodiment of the present invention. The
image in FIG. 2 represents a user display showing a video
frame in which features are tracked. In this instance, the face
of a person in the scene is tracked using an oval-type
boundary 210 (and, e.g. 240). Features to be tracked are
identified within the boundary 210 using a variety of mesh
points, with mesh point 220 referenced by way of example.
In this example, features to be identified include eyes, nose,
mouth, chin and edges of the face. The ballistics of the
identified features are computed and used to track the
features from frame to frame.

Other characteristics of the scene, such as boundary 230,
are also referenced and used in tracking features from frame
to frame as any mesh points are blocked. In some imple-
mentations, a user operating the system as represented in
FIG. 2 is prompted to define an object before the object
moves off screen, when the object reaches such a boundary.
In this example, the face in the boundary 210 is shown near
the edge of the screen. As such, the system may be pro-
grammed to automatically recognize the boundary location
and prompt a user to identify objects within the boundary
before they move off screen.

In other implementations, objects for which no boundary
has been identified yet moving off screen or into occlusion
can be similarly detected, with a user prompted to identify
the object or objects. Such user-identification may, for
example, involve defining hard keyframes at the beginning
and end of a series of frames, or time segments, where the
object cannot be seen. For instance, when an object enters a

10

15

20

25

30

35

40

45

50

55

60

65

10

scene, and then later leaves a scene, hard keyframes can be
set at frames corresponding to the entry and exit of the
object, facilitating the tracking of the object during its
presence in the scene, while tracking of the object is not
carried out when the object is not in the scene. Where an
object returns to a scene, previously-defined tracking points
may again be used, or a new set of points can be developed,
to suit different applications.

In many applications, an arrow or other type of symbol is
used and/or assigned to mesh points to assign motion-related
characteristics of the points as pertaining to one or more of
direction, velocity and acceleration.

FIG. 3 shows a system 300 for particle-based tracking,
according to another example embodiment of the present
invention. One or more aspects of the system 300 may, for
example, be implemented with a computer processor circuit
(e.g., a CPU), an application-specific processor circuit, or a
collection of such circuits. In addition, one or more com-
ponents of the system 300 can be integrated into a single
component that carries out the respective functionality of the
combined components. Generally, the system 300 receives
and processes video data 310 for tracking objects from
frame to frame.

A boundary/mesh point generator 320 generates boundary
and mesh point data 321, using information in the video data
310 and/or user inputs defining features to be tracked. In
many implementations, the mesh point data 321 is generated
based upon user inputs collected by a user interface, which
can be carried out in a manner consistent with that described
in FIG. 2.

Aballistics engine 330 receives the video data 310 and the
mesh point data 321, and uses this received data to generate
ballistics data 332 that can be used to estimate movement of
the mesh point data 321 from frame-to-frame. This ballistics
data 332 may, for example, include processing parameters,
code and/or an algorithm-type of data that can be used to
estimate motion for propagating boundary/mesh points
throughout a scene.

A propagation estimation engine 340 uses the ballistics
data 332 to generate new boundary/mesh points 342 for a
subsequent frame in the video data. A coherence evaluator
350 evaluates the new boundary/mesh points 342 for coher-
ence, using coherence variables 351 as an input, to estimate
a coherence condition of the mesh points (e.g., as discussed
above, such as relative to boundaries and occlusion).

If the coherence evaluator 350 determines that the new
boundary/mesh points 342 are coherent, these new bound-
ary/mesh points 342 are passed back to the ballistics engine
330 for use in generating new ballistics data 332 for propa-
gating the new boundary/mesh points 342 to another sub-
sequent frame. In some instances, the ballistics data 332 is
maintained and the new boundary/mesh points 342 are
provided to the propagation estimation engine 340, which
uses a previous set of ballistics data 332 to propagate the
new boundary/mesh points 342 to another frame. In this
context, an image corresponding to image data within the
mesh is transformed from frame to frame, in which the
transformed image is that which is in the propagated mesh.

If the coherence evaluator 350 determines that coherence
has been lost, a reset function 360 generates a reset frame
indicator 362, which is passed to the boundary/mesh point
generator 320 to effect a reset and the generation of a new
set of boundary/mesh points. This reset may, for example,
involve generating a new set of boundary/mesh points based
upon a previous video frame (e.g., one or more video frames
before from a current frame in which coherence was deter-
mined to be lost).

US 9,478,033 Bl

11

For each iterative generation of boundary/mesh points,
the tracked video data as corresponding to these points can
be selectively output for a variety of uses, such as for adding
special effects or otherwise modifying the video data 310.
For example, when an object such as a human face is tracked
in a scene, image data modification that is tailored to the
person’s face can be carried out upon pixels in the tracked
mesh, ensuring that the image data modification follows
through the scenes.

The above-discussed approaches may be carried out to
effect tracking in a multitude of disparate applications. The
following use-case type discussion of exemplary embodi-
ments may be carried out using one or more of the systems,
components and approaches as discussed above.

In accordance with various example embodiments, video
clip data is tracked for use in modifying the data in a host
application. A user input device is configured to receive user
inputs for setting at least one keyframe that locates a mask
shape around an object to be tracked in a scene of the video
clip. In certain applications, as an alternative or in addition
to such user input, keyframes are automatically determined
based upon characteristics of an image (e.g., using face
recognition to identify a face in a scene). If the tracked
object is obscured or goes off-frame, keyframes may be
placed at the start and end of the time segments in which the
object is not trackable in the scene (e.g., via user input or as
part of an iterative tracking process that automatically
determines obscurities/off-frame movement). Keyframes
placed and/or modified by a user can be tagged as “hard
keyframes” and displayed in a user-accessible keyframe list.

Keyframes can be set in a variety of manners. In some
implementations, each keyframe is adjusted so that the mask
completely surrounds the area to be tracked, to facilitate
manipulation of the video data in the tracked mask region
(e.g., for later effects application). An inset portion of the
mask is then set to include a central area of the tracked object
without background. Accordingly, the keyframe itself is
somewhat larger than the object/area to be tracked, while the
inset more accurately identifies the object within the scene,
relative to any background or other objects. For example, a
keyframe mask can be set to completely surround an actor’s
head, while the inset is limited to the actor’s face.

Clip segments between keyframes, or between a keyframe
and the start or end of a clip, referred to here as “spans,” can
be processed separately from other spans. In connection
with various embodiments, spans that can’t be tracked (e.g.,
because of an obscuration) are marked as un-trackable.
Individual spans or all spans can be tracked based upon user
input selections indicating the same. Soft keyframes are
used to animate the mask to follow the tracked object within
spans, and can be used as an ancillary input relative to main
tracking parameters (e.g., relative to hard keyframes). Key-
frames can be adjusted to obtain better tracking if there is a
problem, and updated spans can be re-tracked. In some
implementations, the soft keyframes are automatically
updated (e.g., overwritten) by the system, whereas the hard
keyframes placed by the user are protected from such action.
The soft keyframes can be converted into hard keyframes
via editing them, or by explicitly placing a hard keyframe at
the location of a soft keyframe. This can be done via user
input, or automatically based upon certain conditions (e.g.,
by determining that a keyframe represents a scene or occlu-
sion boundary for a particular span).

Once the tracking has been satisfactorily completed (e.g.,
the position of an object has been tracked throughout a span
or scene), the animated mask as defined by the tracked
position throughout several frames can be used to mask the

5

10

15

20

25

30

35

40

45

55

60

12

application of any suitable effect, such as a blur or a
lightening. This masked application can be used to effec-
tively mask the tracked object from any such effects, or to
apply affects to the tracked object (or objects) and mask
other portions of the scene.

Spans are tracked to suit various needs, in accordance
with different example embodiments, and relative to key-
frame positions at one or both ends of a clip, or to a
beginning or end of a clip. If the span is open at one end, the
tracking is begun at the bounding keyframe (the other end),
using the information available about the object location.
Overlapping frame pairs are passed for tracking, either
forward or reverse in time, depending on the location of the
open span end.

For instance, if the span is open at the beginning, tracking
is carried out from the end of the clip back to the beginning,
using the keyframe at the end as a starting point. New mask
parameters are created for the second frame of each pair of
frames as the tracking is carried out from frame to frame,
which causes the mask to animate so as to follow the object
from frame to frame. Accordingly, each frame pair is tracked
based upon the tracking of the previous frame pair. If the
tracking quality falls below a minimum, such as relative to
a number of preserved points and other characteristics as
discussed above (e.g., obscuration or an object leaving the
frame), tracking is halted. Once the track has completed, the
resulting animation parameters for the mask, as defined by
the frame-to-frame tracking of the mask are converted into
soft keyframes.

If there are keyframes at both ends of a span, the tracking
can be carried out from both ends of the span, heading
towards the other end, one going forward in time and one
going in reverse. Once tracking is completed in both direc-
tions, two resulting sets of animation parameters at each
frame are combined using a weighted average, and soft
keyframes are set at those locations.

Frame pairs are tracked using one or more of a variety of
approaches, some of which may involve one or more aspects
of tracking as in the OpenCV product referenced above. In
one embodiment, two image frames (Frame 1 and Frame 2)
are presented for tracking. Frame 1 may occur either before
or after Frame 2, and the frames need not be adjacent in a
video clip (e.g., two frames that are separated by other
frames can be tracked to skip over an occlusion in an
intervening frame). A mask shape is provided to focus upon
the object inside the mask. A list of suitable features is
created for subsequent tracking. Such suitable features may,
for example, include features that lie inside of the mask,
aren’t too close together, and mark what amount to corners
(high eigenvalues) in the image, and the list of such features
can be regenerated for each Frame 1 of the pair. The
movement of the features from Frame 1 to Frame 2 is
determined and used to create a set of point pairs, indicating
the location of each feature in Frame 1 and Frame 2. The
point pairs are used to calculate a rigid 2D transform for the
object being tracked and to produce rotation, x and y scale,
and x and y translation for the object. The 2D transform is
applied to the Frame 1 mask shape, producing a new mask
shape for Frame 2.

Frame pairs are prepared using monochrome images so
the frames are converted to monochrome before any pro-
cessing occurs on them. The mask inset shape (e.g., a
rectangle or an ellipse) is rasterized to produce a bitmap
mask distinguishing the inside from the outside of the mask,
and the bitmap mask is used to limit the selection of features
to the inside of the mask inset shape. A feature list is made
from features found only in Frame 1, and from what can be

US 9,478,033 Bl

13

a predefined or otherwise limited number of features (e.g.,
an upper limit of 200 features). The distance between
selected features can vary depending upon the application.
In some implementations, the distance is maintained at a
minimum of about 5 pixels, or of about 3 pixels (e.g., when
the mask covers 100 pixels or fewer). In addition, a mini-
mum number of detected features can be set as a determi-
nation as to whether tracking can be carried out (e.g., the
detection of 8 or fewer features can be used to cancel
tracking).

An optical flow approach is used to find each tracked
feature’s location in Frame 2, such as by using a sparse
iterative version of the Lucas-Kanade optical flow using
image pyramids, such as described in Jean-Yves Bouguet,
Pyramidal Implementation of the Lucas Kanade Feature
Tracker Description of the Algorithm, Intel Corporation
Microprocessor Research Labs (2000), which is fully incor-
porated herein by reference. For the second and subsequent
frame pairs in a span, the transform calculated by the
previous frame pair is used to generate a guess for the
positions of the features in Frame 2, which can enhance
accuracy and permit the use of a relatively smaller search
window. The location, in Frame 2, of a feature from Frame
1 is searched within a window centered on a predicted
location of that feature, where the predicted location is based
on the previous frame pair transform (if there is one).

Larger window sizes generally require greater processing
power, yet too small of a window size may result in lost or
misrecognized features; thus, the window size can be tai-
lored to a particular application (e.g., between about 7 and
25 pixels in size), and can be set using a trial-and-error type
of approach. Accordingly, the window size can be dynami-
cally adjusted to facilitate (e.g., maximize) efficiency and
accuracy.

If the derived transform is of low quality, due to issues
such as too few points found in Frame 2, or output points
that produce a low-accuracy transform, the window is auto-
matically enlarged and an optical flow determination is
repeated. If the transform produced is very high quality, the
window size is reduced for the next frame pair. The window
size adjustment can be made in cycles, with a limit in
number of cycles selectively set to accommodate expected
failures (e.g., if growing a window four times has not
generated a positive result, the process can be terminated or
reset, as described above, such as by growing the window to
about 150% of its previous size in each cycle, or shrinking
the window to about 80% of the previous size). After the
optical flow finished for the frames, points from Frame 1 that
were not found in Frame 2 are removed from the point set,
and the remaining point set is called the Feature Flow, as
discussed further below.

A 2D Transform is derived from the Feature Flow as
follows. Point pairs are randomly selected to form triangles,
including one triangle in Frame 1 and one triangle in Frame
2. If there are 10 or fewer point pairs, all point pairs are used.
If there are more than 10 point pairs, a random selection of
the pairs without replacement is used. Triangles are rejected
if their points in Frame 1 are close to collinear or if two of
the points are too close together, to mitigate issues with an
equation solver failing with a zero determinate. Triangles are
also rejected if the distance between the points in each pair
is more than twice the average distance, to eliminate bad
point trackings that can produce point pairs that are very
different than others in the set.

A non-iterative (flattened) linear equation solver is used to
calculate the affine transform that would transform the
Frame 1 triangle into the Frame 2 triangle. Each transform

10

15

20

25

30

35

40

45

50

55

60

65

14

is used to calculate an average result triangle by transform-
ing a unit triangle and averaging the corresponding vertex
positions of the resultant triangles. Each transform is used
again to transform a unit triangle, from which a scalar
distance from the average triangle is calculated. These
distances are accumulated and a standard deviation is cal-
culated from the result. Each transform is again used on a
unit triangle as before, and those transforms whose distance
from the average is more than Y2 standard deviation are
rejected. If there aren’t very many transforms, the limit is 1
standard deviation. This filtering of transforms (rejecting
outliers) is repeated until there are fewer than a set number
of transforms left (e.g., 110 transforms, or %4 of the number
of triangles that can be produced by 12 points). The remain-
ing transforms are used as above to calculate an average
transformed unit triangle, and then a final transform is
derived from that triangle. In other approaches, the trans-
forms are averaged to generate an affine transform. This
process may occur iteratively with the optical flow calcula-
tion while increasing the optical flow window size.

The transform produced by the previous step is converted
into separate rotation, scale, and translation components
using a polar decomposition, and the separate components
are used to animate the mask shape from Frame 1 to Frame
2. Each of the components corresponds to an animatable
parameter used to animate the mask from frame to frame. In
addition to the mask animation, a quality measure is pro-
duced and stored. This measure is based on the number of
tracked features and the proportion of features from Frame
1 that were found in Frame 2.

Bidirectional tracks are combined as follows. When track-
ing spans that have keyframes at both ends, separate track-
ings are performed from the first to the last frame of the
span, and from the last to the first frame (as discussed
above), with the separate trackings occurring in parallel as
desired. When tracking multiple spans using the Track All
button, all spans can be tracked in parallel. These trackings
produce lists of mask parameters, the same information as in
keyframes. FEach item on the list also contains a quality
measure, relative to one or more conditions as discussed
above. A soft keyframe is produced from the two tracking
lists with a weighted average of the two directions, with the
weighting being a combination of distance from the start of
the track and the quality metric. The closer a track item is to
its starting keyframe, the more weight it’s given. Similarly,
a track item having a higher quality is weighted more highly.

The following discussion references various other
example embodiments and implementations, some of which
may be implemented in connection with the approaches
and/or systems as shown in the Figures and/or otherwise
described above.

According to another example embodiment, a multi-
dimensional image processing approach involves presenting
objects in a manner that implies or otherwise represents
depth to a viewer. In one implementation, two-dimensional
(2-D) transforms are used to interpolate, with position
estimation, scaling, rotation and skewing across one or more
points. When a key frame is injected, interpolation is carried
out across a set of key frames to mitigate or eliminate
incorrect deformation. For example, an image portion rep-
resenting a side of a human face is tracked in a scene, and
the side can be deformed so that it looks smaller (depending
upon the movement of the face), to emulate 3-D imaging.

In another implementation, full 3-D rotational data is
processed, using a 3D model for a region of a scene such as
a human head over an object definition. In this case, indi-
vidual key features are identified and tracked over a range of

US 9,478,033 Bl

15

deformation that may be greater, relative to 2-D data. For
instance, a 3D model can be created of a human head for a
particular video sequence, using images from the head from
different perspectives and/or an estimation scheme(s). As the
head rotates or otherwise moves in successive video frames,
objects are tracked in three dimensions, which accordingly
involves certain relative deformation and/or self-occlusion
that is processed in accordance with the defined 3D model.
As tracked objects rotate, points within a mesh used to
define the objects move relative to one another in accor-
dance with the rotation. These characteristics are used to
track the three-dimensional positioning of the tracked object
(s).

Another example embodiment is directed to tracking
small objects, such as an earring on a person’s ear (e.g., only
four pixels or s0), using a point-based system. A set of points
is defined for the ear and tracked from frame-to-frame. In
some applications, when an object tracked using such a
point-based approach grows larger in a view or scene, as
may occur when panning into an extreme close-up view, a
mesh-based tracking approach is initiated and used to take
over the tracking, where a series of mesh points are used to
define and track the mesh.

In another example embodiment, multiple objects are
tracked in the same system and same frame. One or more of
the above tracking approaches may be carried out for
different objects, and for controlling multiple mesh-based
(or point-based) tracking functions. This approach may be
amenable, for example, for tracking two faces in a scene,
where a mesh is defined and tracked for each face. For
example, referring again to FIG. 2, boundary 240, similar to
boundary 210, can be used to track the other individual in the
scene. Features to be tracked (such as eyes, chin) are
identified via mesh points and used in tracking the face. In
some implementations, interactions between two different
tracked objects are detected and tracked, such as by tracking
objects using separate meshes when the objects are apart,
and using a single mesh when the objects come together.
This approach is amenable, for example, to tracking the
faces of two people that interact (e.g., kiss) by controlling
the joining and separation of the two faces through mutual
collision and occlusion of certain points in the respective
meshes, such as described above in which boundaries 210
and 240 join and/or points are occluded.

Another example embodiment is directed to detecting and
communicating an indication of a quality of data (e.g.,
coherence) for a user to observe. When the scene is close to
losing mesh coherence, user inputs are processed and used,
such as to add a keyframe or reset mesh determination, or to
modify shape definition. For instance, an additional key-
frame may be added when changes to the keyframe become
significant from frame to frame, relative to a keyframe from
which subsequent frames extend. These approaches may be
carried out in addition to the aforesaid frame-based approach
involving reversion to an earlier frame with new mesh
determination, such as described in connection with FIG. 1.

In another example embodiment, image data is merged
with image data that is created or otherwise presented to
achieve one or more effects. In one implementation, objects
are dynamically modified, such as to make the objects
thinner or to re-light the objects to increase brightness. In
these contexts, mask data that describes the area is generated
along with other data, such as point or motion path data, to
vary other settings. For instance, a glint can be created upon
the lips of a face that is being tracked in a scene by adding
a starburst or other type of filter to a pre-defined point of
interest characterizing the lips.

20

25

40

45

55

65

16

In another example embodiment, one or more of the
above-discussed object tracking embodiments and imple-
mentations is implemented with an MPEG-4 type of VOP
(video object plane) processing. For example, static mosaics
can be tracked to achieve desirable compression, using a
tracking approach as described herein to detect and track
persistent objects. Such an approach may involve, for
example, tracking mosaics that are generally unchanged
from frame to frame, by re-using compressed data pertaining
to the majority of the mosaic and modifying/processing that
data which changes from frame to frame in a different
manner. By tracking these mosaics, compression can be
increased, such as by recognizing the repetitiveness of
portions of the static mosaic in iterative frames (e.g., as may
be processed in accordance with MPEG-7 processing
approaches).

In a more particular embodiment, a point-cloud fitting
system is used to assign a mesh to represent the video object,
to describe the motion of the object by the displacements of
node points in the mesh, and to describe intensity variations
via contrast and brightness parameters estimated for each
node point. Using the temporal history of the node point
locations, the nodes of the 2-D mesh are tracked when they
become invisible (e.g., due to self-occlusion, occlusion by
another object or boundary collision). When coherence fails,
an adaptive computation is carried out to re-compute a mesh
for maintaining coherence through the failure point. In such
applications, a final object/mesh may look completely unlike
an initial object/mesh, but coherence is maintained through
the frame-by-frame modifications used to achieve coher-
ence. This approach may be implemented, for example, in
connection with the approach shown in FIG. 2, in which
objects in the boundary 210 are occluded when objects in the
boundary 240 move to mask the objects in boundary 210.

While certain aspects of the present invention have been
described with reference to several particular example
embodiments, those skilled in the art will recognize that
many changes may be made thereto without departing from
the spirit and scope of the present invention. For instance,
one or more approaches as described herein may be com-
puter-implemented or computer-assisted, as by being coded
as software within any coding system as memory-based
instructions executed by a microprocessor, PC or mainframe
computer, or may be implemented in hardware such as a
state machine, or programmed into a circuit such as a
field-programmable gate array. Certain portions of the pro-
cessing approaches described herein may be carried out
using systems and processors, and such systems and pro-
cessors executing software such as After Effects available
from Adobe of San Jose, Calif. In addition, the various
methods and computer-circuit based approaches as
described herein may be implemented with a non-transitory
computer-readable medium (e.g., memory or other storage
device), that stores instructions that, when executed by a
computer processor, cause the processor to carry out the
steps. Aspects of the present invention are set forth in the
following claims.

What is claimed is:

1. A system for processing video data, the system com-

prising:

a logic circuit configured to process a series of sequen-
tially-ordered video frames in a set of video data, by
defining a region of interest in an initial one of the

video frames,
generating a particle mesh from a set of feature points
for an object in the defined region,

US 9,478,033 Bl

17

propagating the particle mesh to an adjacent video
frame using motion vectors of points in the mesh to
determine a coarse boundary at the adjacent frame,

detecting a condition of occlusion and scene boundaries
in the adjacent video frame based upon the position
of the determined coarse boundary, and

using the detected condition of occlusion and scene
boundaries to set a boundary and a number of feature
points within the coarse boundary in the adjacent
video frame, to maintain mesh coherence and track
the object in the adjacent video frame.

2. The system of claim 1, wherein the logic circuit is
further configured to

test the particle mesh in the adjacent video frame to

determine whether coherence fails, based upon a num-
ber of the feature points that are maintained in the
propagated mesh, and

in response to determining that the coherence fails, repeat-

ing the steps of defining, forming, propagating, detect-
ing and using with a new region of interest in one of the
video frames that is prior to the initial frame in
sequence.

3. The system of claim 1, wherein the logic circuit is
configured to propagate the particle mesh by

analyzing adjacent video frames to estimate motion char-

acteristics of the feature points within the particle
mesh, and

using the estimated motion characteristics to generate the

motion vectors.

4. The system of claim 1, wherein the logic circuit is
configured to generate the particle mesh from a set of feature
points for an object in the defined region by determining
points defining the particle mesh using a set of feature points
including at least one of: model-based features, wire frame
features, region-based features, and points of interest on a
calculated surface, region or active contours.

5. The system of claim 1, wherein the logic circuit is
configured to automatically define the region of interest
around an object identified using image characteristics of the
initial video frame.

6. The system of claim 1, wherein

the series of sequentially-ordered video frames includes a

plurality of consecutive frames, and

the logic circuit is configured to

carry out the steps of propagating, detecting and using
to propagate the particle mesh through the plurality
of consecutive frames, and

test the particle mesh in the consecutive frames to
determine whether coherence fails, based upon a
number of feature points maintained in the propa-
gated mesh throughout the plurality of consecutive
frames.

7. The system of claim 1, wherein

the series of sequentially-ordered video frames includes a

plurality of consecutive frames, and

the logic circuit is configured to

carry out the steps of propagating, detecting and using
to propagate the particle mesh through the plurality
of consecutive frames,

test the particle mesh in the consecutive frames to
determine whether coherence fails, based upon a
number of feature points maintained in the propa-
gated mesh throughout the plurality of consecutive
frames, and

in response to determining that coherence does not fail,
use the propagated particle mesh to track an object in
the consecutive frames, and apply a video effect to

5

10

15

20

25

30

35

40

45

50

65

18

the tracked object in each of the plurality of con-
secutive frames by modifying data representing the
tracked object in each of the plurality of consecutive
frames.

8. The system of claim 1, wherein the logic circuit is
configured to

define a region of interest by defining a set of points

bounding the region of interest for the initial frame and
an end frame in the sequentially-ordered video frames,
and
carry out the steps of propagating, detecting and using to
propagate the particle mesh through a sequence of the
frames beginning at the initial frame sequentially
through the end frame, using the defined set of points
in the initial and end frames to set the beginning and
end of the propagated particle mesh, to set a boundary
and number of feature points within the coarse bound-
aries in each of the video frames in the sequence.
9. The system of claim 1, wherein the logic circuit is
configured to
define a region of interest by defining a set of points
bounding the region of interest for the initial frame and
an end frame in the sequentially-ordered video frames,

carry out the steps of propagating, detecting and using to
propagate the particle mesh through a forward-se-
quence of the frames beginning at the initial frame
sequentially through the end frame, and to propagate
the particle mesh through a reverse-sequence of frames
beginning at the end frame sequentially through the
initial frame, using the defined set of points in the initial
and end frames to set the beginning and end of the
propagated particle mesh, and
set a boundary and number of feature points within the
coarse boundaries in each of the video frames in the
sequence based upon the propagated particle mesh in
both the forward-sequence of frames and the reverse-
sequence of frames.
10. The system of claim 1, wherein the logic circuit is
configured to
define a region of interest by defining a set of points
bounding the region of interest for the initial frame and
an end frame in the sequentially-ordered video frames,

carry out the steps of propagating, detecting and using to
propagate the particle mesh through a forward-se-
quence of the frames beginning at the initial frame
sequentially through the end frame, and to propagate
the particle mesh through a reverse-sequence of frames
beginning at the end frame sequentially through the
initial frame, using the defined set of points in the initial
and end frames to set the beginning and end of the
propagated particle mesh,

weigh the particle meshes in each frame based upon at

least one of comparison between the mesh and the

defined set of points in the initial frame in the sequence

and a quality of the mesh based upon mesh coherence,
combine the weighted meshes for each frame, and

set a boundary and number of feature points within the

coarse boundaries in each of the video frames in the
sequence based upon the combined meshes.

11. The system of claim 1, wherein the logic circuit is
configured to define a region of interest by defining a set of
points bounding the region of interest in response to user
inputs received from a user input device.

12. The system of claim 1, wherein the logic circuit is
configured to define a region of interest by defining a set of
points bounding the region of interest and a set of points

US 9,478,033 Bl

19

bounding an inset portion of the region of interest, the inset
portion more specifically defining a feature in the video
frames to be tracked.
13. The system of claim 1, wherein the logic circuit is
configured to define a region of interest by selecting points
having high eigenvalues, relative to other points, to define a
boundary of the region of interest.
14. The system of claim 1, wherein the logic circuit is
configured to define a region of interest iteratively for a
plurality of the video frames by dynamically adjusting the
size of the region of interest based upon a degree of mesh
coherence.
15. A system for tracking objects in a series of video
frames, the system comprising:
a user interface circuit configured to receive user inputs
for defining a region of interest in an image represented
by a first one of the video frames; and
a logic circuit configured to
generate a particle mesh from a set of feature points for
the defined region of interest in the first one of the
video frames, calculate a transformation function for
propagating the mesh to a temporally-adjacent one of
the video frames using motion vectors for the feature
points, and propagate the particle mesh from the first
video frame to the temporally-adjacent video frame,

for each subsequent pair of temporally-adjacent video
frames, use a transformation function calculated for
a temporally-previous pair of video frames to propa-
gate a particle mesh from a first one of the pair of
video frames to a second one of the pair of video
frames, and calculate a transformation function for
propagating the mesh from the first one of the pair of
video frames to the second one of the pair of video
frames,

test the propagated mesh for coherence based upon the
number of the feature points maintained in the propa-
gated mesh throughout each video frame, and

in response to determining that the propagated mesh is
coherent, use the propagated mesh to apply a video
effect to video data in a region defined by the mesh
in each of the video frames.

16. The system of claim 15, wherein the logic circuit is
configured to calculate each transformation function by, for
each pair of frames from which the transformation function
is calculated,

randomly selecting point pairs in each frame to form sets
of triangles for each of the frames,

for each set of triangles, using a linear equation solver to
calculate an affine transform that would transform a
first one of the triangles into a second one of the
triangles,

transforming a unit triangle using each calculated affine
transform to generate an average result triangle for each
transform, and averaging corresponding vertex posi-
tions of the average result triangles,

transforming a unit triangle using each calculated affine
transform, calculating a scalar distance from each of the
unit triangles to the average result triangle, and calcu-
lating a standard deviation of the unit triangles from the
result,

transforming a unit triangle using each calculated affine
transform, and rejecting triangles whose distance from
the average is more than Y% the calculated standard
deviation,

repeating the transforming steps with remaining non-
rejected triangles until fewer than a threshold number
of transforms remain,

10

15

20

25

30

35

40

45

50

55

60

65

20

using the remaining transforms to calculate an average
transformed unit triangle, and

deriving a final transform from the average transformed
unit triangle, and using the final transform as the
transformation function for the pair of frames.

17. The system of claim 16, wherein the logic circuit is
configured to reject ones of the sets of triangles in response
to at least one of: the points being collinear or the points
being closer than a predefined minimum space, and the
distance between the points in each pair being more than
twice the average distance between the points.

18. The system of claim 15, wherein the feature points for
the defined region of interest are set for a single video frame
at a temporal end of the series of video frames, and wherein
the logic circuit is configured to use the transformation
function to generate the particle mesh for every frame of the
series of video frames, beginning with a predefined key-
frame as the first one of the video frames and extending to
the video frame at the temporal end of the series of video
frames.

19. A system for tracking objects in a series of video
frames, the system comprising:

a user interface circuit configured to receive user inputs
for defining a region of interest in first and last key-
frame images in the series of video frames; and

a logic circuit configured to,
for each of the first and last keyframe images,

form a particle mesh from a set of feature points for
the defined region of interest, calculate a transfor-
mation function for propagating the mesh to a
temporally-adjacent one of the video frames using
motion vectors for the feature points, and propa-
gate the particle mesh from the keyframe images
to the temporally-adjacent video frame,
for subsequent pairs of temporally-adjacent video
frames in a temporal direction towards the other of
the first and last keyframe images, use a transfor-
mation function calculated for a temporally-pre-
vious pair of video frames to propagate a particle
mesh from a first one of the pair of video frames
to a second one of the pair of video frames, and
calculate a transformation function for propagat-
ing the mesh from the first one of the pair of video
frames to the second one of the pair of video
frames,
combine the propagated particle mesh for the video
frames generated from each of the keyframe images,
test the combined propagated mesh for coherence based
upon the number of the feature points maintained in
the propagated mesh throughout each video frame,
and
in response to determining that the combined propa-
gated mesh is coherent, use the propagated mesh to
apply a video effect to video data in a region defined
by the mesh in each of the video frames, by modi-
fying the video data to which the video effect is to be
applied.

20. A method for processing video data, the method
comprising:

in a logic circuit, processing a series of sequentially-
ordered video frames in a set of video data, by
defining a region of interest in an initial one of the

video frames,
generating a particle mesh from a set of feature points
for an object in the defined region,

US 9,478,033 Bl

21

propagating the particle mesh to an adjacent video
frame using motion vectors of points in the mesh to
determine a coarse boundary at the adjacent frame,

detecting a condition of occlusion and scene boundaries
in the adjacent video frame based upon the position
of the determined coarse boundary, and

using the detected condition of occlusion and scene
boundaries to set a boundary and a number of feature
points within the coarse boundary in the adjacent
video frame, to maintain mesh coherence and track
the object in the adjacent video frame.

21. A non-transitory computer readable medium including
program instructions that, when executed by a computer
processor, cause the processor to process a series of sequen-
tially-ordered video frames in a set of video data, by
performing the steps of:

defining a region of interest in an initial one of the video

frames;

generating a particle mesh from a set of feature points for

an object in the defined region;

transforming the generated particle mesh by propagating

the particle mesh to an adjacent video frame using
motion vectors of points in the mesh to determine a
coarse boundary at the adjacent frame;

detecting a condition of occlusion and scene boundaries in

the adjacent video frame based upon the position of the
determined coarse boundary; and

using the detected condition of occlusion and scene

boundaries to set a boundary and a number of feature
points within the coarse boundary in the adjacent video
frame, to maintain mesh coherence and track the object
in the adjacent video frame.

#* #* #* #* #*

10

15

20

25

30

22

